Thermogelling of double hydrophilic multiblock and triblock copolymers of N,N-dimethylacrylamide and N-isopropylacrylamide: chain architectural and Hofmeister effects.

نویسندگان

  • Zhishen Ge
  • Yueming Zhou
  • Zhen Tong
  • Shiyong Liu
چکیده

A series of thermoresponsive double hydrophilic (AB)(n) multiblock and ABA triblock copolymers of N,N-dimethylacrylamide (DMA) and N-isopropylacrylamide (NIPAM) with varying sequence lengths were synthesized via successive reversible addition-fragmentation chain transfer (RAFT) polymerizations by employing polytrithiocarbonate as the chain transfer agent. Previously, we reported that multiblock copolymers in dilute aqueous solutions can form either unimolecular or multimolecular micelles at elevated temperatures depending on the relative chain lengths of PDMA and PNIPAM sequences (Zhou et al. Langmuir 2007, 23, 13076-13084). In this follow-up work, we further explored and compared the chain architectural (multiblock vs triblock) and Hofmeister effects (addition of various sodium salts) on the gelation behavior of multiblock and ABA triblock copolymers at high concentrations and attempted to establish a correlation between the aggregation behavior and gelation properties of multiblock copolymers at low and high polymer concentrations, respectively. It was found that only m-PDMA(p)-PNIPAM(q) multiblock copolymers with PDMA and PNIPAM sequence lengths located within a specific range can form physical gels at elevated temperatures. Rheology measurements revealed that multiblock copolymers possess considerably lower critical gelation temperatures (CGT) and higher gel storage modulus, G'(gel), as compared to those of PNIPAM-b-PDMA-b-PNIPAM triblock copolymers possessing comparable sequence lengths. The addition of inorganic sodium salts can effectively facilitate thermogelling for multiblock and triblock copolymers, resulting in decreasing CGTs and critical gelation concentrations (CGCs) in the order of Hofmeister series with increasing hydration capabilities. The unique thermogelling behavior of aqueous multiblock copolymer solutions in the absence and presence of inorganic salts, as compared to that of ABA triblock copolymers, augurs well for their potential applications in various fields such as biomaterials and biomedicines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of β-cyclodextrin-Based Star Block Copolymers with Thermo-Responsive Behavior

Star polymers are one example of three-dimensional macromolecules containing several arms with similar molecular weight connected to a central core. Due to their compact structure and their enhanced segment density in comparison to linear polymers of the same molecular weight, they have attracted significant attention during recent years. The preparation of block-arm star copolymers with a perm...

متن کامل

Propene-cycloolefin polymerization

Highly active metallocenes and other single site catalysts have opened up the possibility of polymerizing cycloolefins such as norbornene (N) or of copolymerizing them with ethene (E) or propene (P). The polymers obtained show exciting structures and properties. E-N copolymers are industrially produced materials, with variable and high glass transitions depending on the wide range of their micr...

متن کامل

Polymerization-induced thermal self-assembly (PITSA)† †Electronic supplementary information (ESI) available: Experimental details, characterization data, and additional figures. See DOI: 10.1039/c4sc03334e Click here for additional data file.

Polymerization-induced self-assembly (PISA) is a versatile technique to achieve a wide range of polymeric nanoparticle morphologies. Most previous examples of self-assembled soft nanoparticle synthesis by PISA rely on a growing solvophobic polymer block that leads to changes in nanoparticle architecture during polymerization in a selective solvent. However, synthesis of block copolymers with a ...

متن کامل

Cononsolvency-induced micellization of pyrene end-labeled diblock copolymers of N-isopropylacrylamide and oligo(ethylene glycol) methyl ether methacrylate.

Pyrene end-labeled double hydrophilic diblock copolymers, poly(N-isopropylacrylamide)-b-poly(oligo(ethylene glycol) methyl ether methacrylate) (Py-PNIPAM-b-POEGMA), were synthesized via consecutive reversible addition-fragmentation chain transfer polymerization using a pyrene-containing dithioester as the chain transfer agent. These diblock copolymers molecularly dissolve in pure methanol and w...

متن کامل

Heterofunctional Poly(ethylene glycol) (PEG) Macroinitiator Enabling Controlled Synthesis of ABC Triblock Copolymers

ABC triblock copolymers with a poly(ethylene glycol) (PEG) midblock have attractive properties for biomedical applications because of PEG's favorable properties regarding biocompatibility and hydrophilicity. However, easy strategies to synthesize polymers containing a PEG midblock are limited. In this study, the successful synthesis of a heterofunctional PEG macroinitiator containing both an az...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 27 3  شماره 

صفحات  -

تاریخ انتشار 2011